Object detection requires substantial labeling effort for learning robust models. Active learning can reduce this effort by intelligently selecting relevant examples to be annotated. However, selecting these examples properly without introducing a sampling bias with a negative impact on the generalization performance is not straightforward and most active learning techniques can not hold their promises on real-world benchmarks. In our evaluation paper, we focus on active learning techniques without a computational overhead besides inference, something we refer to as zero-cost active learning. In particular, we show that a key ingredient is not only the score on a bounding box level but also the technique used for aggregating the scores for ranking images. We outline our experimental setup and also discuss practical considerations when using active learning for object detection.
翻译:查找对象需要大量标记,以学习强健模型。 积极学习可以通过明智地选择相关例子来减少这种努力, 并附加注释。 但是, 适当选择这些例子而不引入对一般化业绩有负面影响的抽样偏差并不是直截了当的, 最积极的学习技巧无法兑现在现实世界基准上的承诺。 在我们的评价文件中, 我们注重积极学习技巧, 而不使用计算间接成本, 而不是推论, 我们称之为零成本主动学习。 特别是, 我们显示关键成份不仅是约束框层次的分数, 而且是用于汇总排名图像分数的技术。 我们概述了我们的实验设置, 并讨论了在使用积极学习来探测对象时的实际考虑 。