We propose an approximate model for the 2D Kuramoto-Sivashinsky equations (KSE) of flame fronts and crystal growth. We prove that this new ``calmed'' version of the KSE is globally well-posed, and moreover, its solutions converge to solutions of the KSE on the time interval of existence and uniqueness of the KSE at an algebraic rate. In addition, we provide simulations of the calmed KSE, illuminating its dynamics. These simulations also indicate that our analytical predictions of the convergence rates are sharp. We also discuss analogies with the 3D Navier-Stokes equations of fluid dynamics.
翻译:我们提出了二维 Kuramoto-Sivashinsky 方程 (KSE) 的近似模型,用于描述火焰前缘和晶体生长。我们证明这个新的“平静”版本的KSE是全局良态的,而且其解在存在和唯一解时间间隔内以代数级别收敛于KSE的解。此外,我们提供了对平静的KSE的模拟,阐明了其动态特性。这些模拟也表明了我们对收敛速率的分析预测是锐利的。我们还讨论了其与三维流体动力学中的Navier-Stokes方程的类比。