• 本课程将介绍一些实际的ML算法。
  • 然而,我们将把重点放在这些算法建立的基础数学概念上。特别是,要真正理解关于ML的任何东西,您需要非常好地掌握

——微积分,

-线性代数,还有

-概率推理(即概率的数学理论和如何使用它)。

  • 我们将深入探讨应用数学分支的关键部分,并在ML的背景下。

  • 更具体地说,本课程的数学主题可以分为四个基本的学科领域:

  • 数据表示和将数据映射到决策、估计或两者的操作符。我们将从线性表示的深入讨论开始;它们本身就很重要/有用,也被用作非线性表示的构建块。这就是我们需要大量线性代数及其扩展的地方。

  • 估计。从数据集中估计一个参数是什么意思?我们将尽量用统计学的语言,把这个问题建立在一个牢固的数学基础上。

  • 建模。

  • 计算。最后,我们将看看如何计算解决ML中出现的问题。我们将从优化中了解一些基本的算法,并从数值线性代数中了解一些代数技术。

成为VIP会员查看完整内容
124

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
【干货书】计算机科学家的数学,153页pdf
专知会员服务
171+阅读 · 2021年7月27日
专知会员服务
28+阅读 · 2020年11月4日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
421页《机器学习数学基础》最新2019版PDF下载
【干货】​深度学习中的线性代数
专知
21+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
26+阅读 · 2018年8月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员