The reinforcement learning research area contains a wide range of methods for solving the problems of intelligent agent control. Despite the progress that has been made, the task of creating a highly autonomous agent is still a significant challenge. One potential solution to this problem is intrinsic motivation, a concept derived from developmental psychology. This review considers the existing methods for determining intrinsic motivation based on the world model obtained by the agent. We propose a systematic approach to current research in this field, which consists of three categories of methods, distinguished by the way they utilize a world model in the agent's components: complementary intrinsic reward, exploration policy, and intrinsically motivated goals. The proposed unified framework describes the architecture of agents using a world model and intrinsic motivation to improve learning. The potential for developing new techniques in this area of research is also examined.


翻译:强化学习研究领域包含解决智能剂控制问题的广泛方法。尽管已经取得了进展,但创建高度自主剂的任务仍是一项重大挑战。这个问题的一个潜在解决办法是内在动机,即发展心理学的概念。本审查考虑了现有方法,以便根据该代理人获得的世界模式确定内在动机。我们建议对该领域目前的研究采取系统办法,其中包括三类方法,其区别在于它们如何利用该代理人组成部分中的世界模式:互补的内在奖赏、探索政策和内在目标。拟议的统一框架描述了使用世界模式的代理人结构以及改进学习的内在动力。还研究了开发这一研究领域的新技术的潜力。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
31+阅读 · 2023年1月8日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
67+阅读 · 2022年4月13日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年3月10日
Arxiv
31+阅读 · 2023年1月8日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
67+阅读 · 2022年4月13日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员