Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments. The integration of RL with deep learning has recently resulted in impressive achievements in a wide range of challenging tasks, including board games, arcade games, and robot control. Despite these successes, there remain several crucial challenges, including brittle convergence properties caused by sensitive hyperparameters, difficulties in temporal credit assignment with long time horizons and sparse rewards, a lack of diverse exploration, especially in continuous search space scenarios, difficulties in credit assignment in multi-agent reinforcement learning, and conflicting objectives for rewards. Evolutionary computation (EC), which maintains a population of learning agents, has demonstrated promising performance in addressing these limitations. This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL). We categorize EvoRL methods according to key research fields in RL, including hyperparameter optimization, policy search, exploration, reward shaping, meta-RL, and multi-objective RL. We then discuss future research directions in terms of efficient methods, benchmarks, and scalable platforms. This survey serves as a resource for researchers and practitioners interested in the field of EvoRL, highlighting the important challenges and opportunities for future research. With the help of this survey, researchers and practitioners can develop more efficient methods and tailored benchmarks for EvoRL, further advancing this promising cross-disciplinary research field.


翻译:强化学习(RL)是一种机械学习方法,它使代理商能够通过与环境的相互作用,最大限度地获得累积的回报。将RL与深层次学习相结合,最近取得了令人印象深刻的成就,完成了一系列具有挑战性的任务,包括棋盘游戏、街游游戏和机器人控制等。尽管取得了这些成功,但仍存在若干重大挑战,包括:由于敏感的超光谱、长期时间跨度和微薄的奖励而导致的细小趋同特性,在时间分配临时信贷方面存在困难,缺乏多样化的探索,特别是在连续搜索空间情景方面,在多试剂强化学习中的信用分配困难,以及相互冲突的报酬目标。 不断演变的计算(EC),它维持着一批学习代理商,在解决这些限制方面表现出了令人印象深刻的成绩。本文章对将EC纳入RL的最新方法进行了全面调查,称为进化强化学习(EvoRL)。 我们将EvoRL方法按照R的主要研究领域,包括超光量度优化、政策搜索、勘探、奖励塑造、元-RL和多目标的RL。然后,我们讨论未来研究方向,从高效的方法、基准和可变的实地研究机会的实地评估,为这个重要的实地研究机会,强调重要的实地研究机会。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
31+阅读 · 2023年1月8日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
66+阅读 · 2022年4月13日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
31+阅读 · 2023年1月8日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
66+阅读 · 2022年4月13日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员