Reconfigurable intelligent surfaces (RISs) have emerged as a promising technology for enhancing wireless communications through dense antenna arrays. Accurate channel estimation is critical to unlocking their full performance potential. To enhance RIS channel estimators, this paper proposes a novel observation matrix design scheme. Bayesian optimization framework is adopted to generate observation matrices that maximize the mutual information between received pilot signals and RIS channels. To solve the formulated problem efficiently, we develop an alternating Riemannian manifold optimization (ARMO) algorithm to alternately update the receiver combiners and RIS phase-shift matrices. An adaptive kernel training strategy is further introduced to iteratively refine the channel covariance matrix without requiring additional pilot resources. Simulation results demonstrate that the proposed ARMO-enhanced estimator achieves substantial gains in estimation accuracy over state-of-the-art methods.
翻译:暂无翻译