In emerging networked systems, mobile edge devices such as ground vehicles and unmanned aerial system (UAS) swarms collectively aggregate vast amounts of data to make machine learning decisions such as threat detection in remote, dynamic, and infrastructure-constrained environments where power and bandwidth are scarce. Federated learning (FL) addresses these constraints and privacy concerns by enabling nodes to share local model weights for deep neural networks instead of raw data, facilitating more reliable decision-making than individual learning. However, conventional FL relies on a central server to coordinate model updates in each learning round, which imposes significant computational burdens on the central node and may not be feasible due to the connectivity constraints. By eliminating dependence on a central server, distributed federated learning (DFL) offers scalability, resilience to node failures, learning robustness, and more effective defense strategies. Despite these advantages, DFL remains vulnerable to increasingly advanced and stealthy cyberattacks. In this paper, we design sophisticated targeted training data poisoning and backdoor (Trojan) attacks, and characterize the emerging vulnerabilities in a vehicular network. We analyze how DFL provides resilience against such attacks compared to individual learning and present effective defense mechanisms to further strengthen DFL against the emerging cyber threats.
翻译:暂无翻译