Temporal receptive fields of models play an important role in action segmentation. Large receptive fields facilitate the long-term relations among video clips while small receptive fields help capture the local details. Existing methods construct models with hand-designed receptive fields in layers. Can we effectively search for receptive field combinations to replace hand-designed patterns? To answer this question, we propose to find better receptive field combinations through a global-to-local search scheme. Our search scheme exploits both global search to find the coarse combinations and local search to get the refined receptive field combination patterns further. The global search finds possible coarse combinations other than human-designed patterns. On top of the global search, we propose an expectation guided iterative local search scheme to refine combinations effectively. Our global-to-local search can be plugged into existing action segmentation methods to achieve state-of-the-art performance.
翻译:模型的时空可接受领域在行动分割中起着重要作用。 大的可接受领域促进视频剪辑之间的长期关系,而小的可接受字段则帮助捕捉当地细节。 现有的方法可以用手工设计的可接受字段构建模型。 我们能否有效地寻找可接受字段组合来取代手工设计的模式? 为了回答这个问题,我们建议通过全球到地方的搜索计划找到更好的可接受字段组合。 我们的搜索计划利用全球搜索来寻找粗糙组合和本地搜索来进一步获取精细的可接受字段组合模式。 全球搜索除了人类设计模式外,还发现了可能的粗略组合。 除了全球搜索之外,我们提出了一种期待引导迭代本地搜索计划来有效地完善组合。 我们的全球到地方搜索可以连接到现有的行动分割方法中,以实现最先进的功能。