Although weakly-supervised semantic segmentation using only image-level labels (WSSS-IL) is potentially useful, its low performance and implementation complexity still limit its application. The main causes are (a) non-detection and (b) false-detection phenomena: (a) The class activation maps refined from existing WSSS-IL methods still only represent partial regions for large-scale objects, and (b) for small-scale objects, over-activation causes them to deviate from the object edges. We propose RecurSeed which alternately reduces non and false-detections through recursive iterations, thereby implicitly finding an optimal junction that minimizes both errors. We also propose a novel data augmentation (DA) approach called EdgePredictMix, which further expresses an object's edge by utilizing the probability difference information between adjacent pixels in combining the segmentation results, thereby compensating for the shortcomings when applying the existing DA methods to WSSS. We achieved new state-of-the-art performances on both the PASCAL VOC 2012 and MS COCO 2014 benchmarks (VOC val 74.4%, COCO val 46.4%). The code is available at https://github.com/OFRIN/RecurSeed_and_EdgePredictMix.
翻译:虽然仅使用图像级标签(WSSSS-IL)的语义分解监测不力,但使用图像级标签(WSSSS-IL)的语义分解监督不力可能是有益的,但其性能和执行复杂性较低,仍然限制了其应用。主要原因包括:(a) 未检测和(b) 虚假检测现象:(a) 从现有的WSS-IL方法改进的类动地图仍然只是大型天体的局部区域,和(b) 小型天体的超活化导致它们偏离天体边缘。我们提议,RecurSeed,通过循环迭代,以替代方式减少非和假检测,从而隐含地找到最佳连接点,最大限度地减少这两个错误。我们还提议采用称为EdgePredictMix(DA)的新的数据增强(DA)方法,该方法通过利用相邻的像素之间的概率差异信息,进一步表达物体的优势,从而弥补现有DASSS的缺陷。我们提出了新的州-val-ocal CO-dections 和MS CO-CO4的2014年版本基准。