Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality of heuristic approaches and the tremendous improvements in mixed-integer optimization (MIO) technology. Yet, existing MIO-based approaches from the literature do not leverage the power of MIO to its full extent: they rely on weak formulations, resulting in slow convergence and large optimality gaps. To fill this gap in the literature, we propose an intuitive flow-based MIO formulation for learning optimal binary classification trees. Our formulation can accommodate side constraints to enable the design of interpretable and fair decision trees. Moreover, we show that our formulation has a stronger linear optimization relaxation than existing methods. We exploit the decomposable structure of our formulation and max-flow/min-cut duality to derive a Benders' decomposition method to speed-up computation. We propose a tailored procedure for solving each decomposed subproblem that provably generates facets of the feasible set of the MIO as constraints to add to the main problem. We conduct extensive computational experiments on standard benchmark datasets on which we show that our proposed approaches are 31 times faster than state-of-the art MIO-based techniques and improve out of sample performance by up to 8%.


翻译:决策树是最受欢迎的机器学习模式,通常用于从收入管理和医药到生物信息学等各种应用。在本文中,我们考虑了学习最佳二进制分类树的问题。近年来,由于超光速方法的经验不够优化,混合整流优化(MIO)技术也取得了巨大改进,因此,关于这一专题的文献近年来有所生动。然而,现有基于MIO的文献方法并没有充分利用MIO的力量:它们依赖薄弱的配方,导致缓慢的趋同和巨大的最佳化差距。为填补文献中的这一空白,我们建议采用一种基于直观的流基MIO配方,以学习最佳二进制树。我们的配方可以容纳侧面的限制,以便能够设计可解释的公平决策树。此外,我们表明,我们的配方比现有方法更能更宽松的线性优化。我们利用我们拟订的配方的分解结构以及最大流/最小的二进制,以更快的方法来加速计算。我们提议了一种定制的程序,用来解决每个不切实际的流基的MIO制,我们提出了一种可改进的精确的模型,用来将各种标准化的基数调整的模型,用以显示我们用来改进的精确的模型的精确的基数。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年5月24日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
0+阅读 · 2021年5月19日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员