Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its dynamic version. These entropies are particularly suitable to deal with distributions satisfying the proportional reversed hazard model. We study the connection with fractional integrals, and some bounds and comparisons based on stochastic orderings, that allow to show that the proposed measure is actually a variability measure. The investigation also involves various notions of reliability theory, since the considered dynamic measure is a suitable extension of the mean inactivity time. We also introduce the empirical generalized fractional cumulative entropy as a non-parametric estimator of the new measure. It is shown that the empirical measure converges to the proposed notion almost surely. Then, we address the stability of the empirical measure and provide an example of application to real data. Finally, a central limit theorem is established under the exponential distribution.


翻译:根据基于累积分布函数的信息计量理论,我们提出分数通用累积累积酶及其动态版本。这些寄生虫特别适合处理符合比例反向危险模型的分布。我们研究了与分数整体体的联系,以及基于随机顺序的某些界限和比较,从而可以表明拟议措施实际上是一种可变度。调查还涉及各种可靠性理论概念,因为所考虑的动态计量是平均活动时间的适当延伸。我们还引入了经验性一般分数累积酶,作为新计量标准的非参数估测符。我们发现,经验计量几乎可以肯定地与拟议概念一致。然后,我们处理经验计量的稳定性,并举一个应用真实数据的例子。最后,在指数分布下确定了一个核心限值。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年7月10日
Arxiv
0+阅读 · 2021年7月9日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员