We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on an equivalent multiparameter problem (MEP) that contains the exact solutions of the NEPv. Due to the characterization of MEPs in terms of a generalized eigenvalue problem this provides a direct way to compute all NEPv solutions for small problems, and it opens up the possibility to develop locally convergent iterative methods for larger problems. Moreover, the linear formulation allows us to easily determine the number of solutions of the NEPv. We propose two numerical schemes that exploit the structure of the linearization: inverse iteration and residual inverse iteration. We show how symmetry in the MEP can be used to improve reliability and reduce computational cost of both methods. Two numerical examples verify the theoretical results and a third example shows the potential of a hybrid scheme that is based on a combination of the two proposed methods.
翻译:我们提出一种方法,在不近似的情况下,将某类非直线性亚值问题(NEPv)的某类非直线性问题进行线性处理,非直线性由以该源子线性函数的商数界定的天平函数表示。精确的线性化取决于包含NEPv确切解决办法的等效多参数问题(MEP)。由于对MEP的定性是泛泛的天平值问题,这为计算所有非直线性非直线性问题提供了直接的方法,为小问题的NEPv解决方案提供了直接的计算方法,为更大的问题开发了开发本地集中迭代法的可能性。此外,线性公式使我们能够很容易地确定NEPv的解决方案的数量。我们提出了两种利用线性结构的数字方案:反向偏移和偏移偏移。我们展示了MEP中如何使用对称来提高两种方法的可靠性和降低计算成本。两个数字例子都证实了理论结果,第三个例子显示了基于两种拟议方法组合的混合办法的潜力。