The importance of symmetries has recently been recognized in quantum machine learning from the simple motto: if a task exhibits a symmetry (given by a group $\mathfrak{G}$), the learning model should respect said symmetry. This can be instantiated via $\mathfrak{G}$-equivariant Quantum Neural Networks (QNNs), i.e., parametrized quantum circuits whose gates are generated by operators commuting with a given representation of $\mathfrak{G}$. In practice, however, there might be additional restrictions to the types of gates one can use, such as being able to act on at most $k$ qubits. In this work we study how the interplay between symmetry and $k$-bodyness in the QNN generators affect its expressiveness for the special case of $\mathfrak{G}=S_n$, the symmetric group. Our results show that if the QNN is generated by one- and two-body $S_n$-equivariant gates, the QNN is semi-universal but not universal. That is, the QNN can generate any arbitrary special unitary matrix in the invariant subspaces, but has no control over the relative phases between them. Then, we show that in order to reach universality one needs to include $n$-body generators (if $n$ is even) or $(n-1)$-body generators (if $n$ is odd). As such, our results brings us a step closer to better understanding the capabilities and limitations of equivariant QNNs.


翻译:从简单的座右铭学习量子机器,最近认识到了对称的重要性:如果任务显示对称(由一组 $mathfrak{G} 美元组成),学习模型应该尊重对称。这可以通过 $\ mathfrak{G}$-quiquivarative 量神经网络(QNNs) 即刻化量子电路的重要性,即由操作者用一个特定代表单位($\mathfrak{G}$ 生成的大门。但在实践中,对于可以使用的门类型可能存在额外的限制,例如能够在最多一k美元平方位上采取行动。在这项工作中,我们研究QNN的对称性和美元体积之间的相互作用如何影响它对于一个特殊案例($mathfqurak{G<unk> _S__n_n)的直观性能。我们的结果显示,如果QNNNN是一步制的,但是半制的对QNF$(美元),那么在一美元和二位平面的基中, 就会显示一个正统基质的对等的对等的对等的对等的对等(美元) 。</s>

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月20日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员