In this work, we study the task of estimating the numbers of distinct and $k$-occurring items in a time window under the constraint of differential privacy (DP). We consider several variants depending on whether the queries are on general time windows (between times $t_1$ and $t_2$), or are restricted to being cumulative (between times $1$ and $t_2$), and depending on whether the DP neighboring relation is event-level or the more stringent item-level. We obtain nearly tight upper and lower bounds on the errors of DP algorithms for these problems. En route, we obtain an event-level DP algorithm for estimating, at each time step, the number of distinct items seen over the last $W$ updates with error polylogarithmic in $W$; this answers an open question of Bolot et al. (ICDT 2013).
翻译:在这项工作中,我们研究在限制有区别的隐私(DP)的限制下,在时间窗口中估计不同项目和有活动项目的数量的任务。我们根据询问是否在一般时间窗口(在1美元和2美元之间),或限于累积(在1美元和2美元之间),或取决于DP邻接关系是活动一级还是更严格的项目一级,来考虑几个变式。我们在这些问题的DP算法错误方面得到了近乎紧凑的上下限。在途中,我们获得一个事件级DP算法,用于在每一步骤中估计在上一个W$更新中看到的不同项目的数量,以美元计算出错数;这是Bolot et 等人的未决问题(ICDT,2013年)。