项目名称: 贵金属-过渡金属异质对的表面等离子体共振光学整流效应

项目编号: No.51271148

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 陈福义

作者单位: 西北工业大学

项目金额: 80万元

中文摘要: 将光波长转化为直流电的光学整流(OR)效应研究,在光探测和光能量转换领域具有重大的军事和工业应用前景, 但经典光学整流理论不能考虑MIM结构金属电极的表面等离子体光学性质和器件几何形状, 局限了高光学整流效率金属纳米材料的发展. 基于具有自主知识产权的Ag(Cu)-TiO2-Ti二极管结构实验基础, 本项目研究贵金属(Ag, Ag-Cu)和过渡金属(Ni,Al,Ti)从亚纳米到亚波长尺寸范围的表面等离子体光学性质, 研究三维结构贵金属-过渡金属异质对的天线性质, 研究量子尺度上贵金属-绝缘体-过渡金属异质结的原子结构、光学性质和量子隧道效应, 研究亚波长尺寸上贵金属-绝缘体-过渡金属MIM结构的二极管性质. 在可见光-近红外波段,探明目前光学整流理论在表面等离子体材料为电极的MIM结构中的应用性, 发展高光学整流效应的纳米复合材料,建立长程电子表面等离子体共振光学整流(PORLE)机制.

中文关键词: 光学整流;表面等离子体共振;贵金属-过渡金属异质对;银;铜

英文摘要: Optical rectification (OR) can convert visible/near-infrared (VIS/NIR) wavelengths into direct current (DC) and has been a significant impact on photodetection and optical energy conversion technologies toward the military and industry application. However, classical optical rectification theory can not address the plasmonic effect in the metal electrode and the device geometry of the metal-insulator-metal (MIM) structure, which limit the development of new metal nanomaterials and nanostructures with higher OR efficiency. Based on our independent intellectual property experimental works on Ag (Cu)-TiO2-Ti nanodiodes, the plasmonic optical rectification (POR) effects are proposed to be investigated in the project. Research contents include the plasmonic properties of noble metal (Ag, Ag-Cu) and transition metal (Ni, Ti, Al) from subnanometer to subwavelength scale, the antenna properties of the three dimensional noble-transition metal heterodimers, the atom structures of metal-insulator-metal (MIM) heterojunction and its optic and quantum tunneling effects, the nanodiode properties of metal-insulator-metal (MIM) nanostructures at subwavelength scale, and the optical rectification properties of devices under different materials, wavelength and polarizations. In VIS/NIR wavelengths, we exploit these contents to a

英文关键词: optical rectenna;surface resonant plasmon;metal–insulator–metal;silver;Cu

成为VIP会员查看完整内容
0

相关内容

【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
211+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
专知会员服务
219+阅读 · 2020年8月1日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
15+阅读 · 2019年6月25日
小贴士
相关VIP内容
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
211+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
专知会员服务
219+阅读 · 2020年8月1日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员