In this article we prove that estimator stability is enough to show that leave-one-out cross validation is a sound procedure, by providing concentration bounds in a general framework. In particular, we provide concentration bounds beyond Lipschitz continuity assumptions on the loss or on the estimator. In order to obtain our results, we rely on random variables with distribution satisfying the logarithmic Sobolev inequality, providing us a relatively rich class of distributions. We illustrate our method by considering several interesting examples, including linear regression, kernel density estimation, and stabilized / truncated estimators such as stabilized kernel regression.
翻译:在本文中,我们证明,估计值稳定性足以表明,通过在总体框架内提供集中界限,允许一出空的交叉验证是一种合理的程序。特别是,我们提供了超出Lipschitz对损失或估计值连续性假设的集中界限。为了获得我们的结果,我们依靠随机变量,其分布满足对数的Sobolev不平等,为我们提供了一个相对丰富的分布类别。我们通过考虑几个有趣的例子来说明我们的方法,包括线性回归、内核密度估计以及稳定/流动的估测器,如稳定的内核回归。