We propose a novel online and adaptive truncation method for differentially private Bayesian online estimation of a static parameter regarding a population. We assume that sensitive information from individuals is collected sequentially and the inferential aim is to estimate, on-the-fly, a static parameter regarding the population to which those individuals belong. We propose sequential Monte Carlo to perform online Bayesian estimation. When individuals provide sensitive information in response to a query, it is necessary to perturb it with privacy-preserving noise to ensure the privacy of those individuals. The amount of perturbation is proportional to the sensitivity of the query, which is determined usually by the range of the queried information. The truncation technique we propose adapts to the previously collected observations to adjust the query range for the next individual. The idea is that, based on previous observations, we can carefully arrange the interval into which the next individual's information is to be truncated before being perturbed with privacy-preserving noise. In this way, we aim to design predictive queries with small sensitivity, hence small privacy-preserving noise, enabling more accurate estimation while maintaining the same level of privacy. To decide on the location and the width of the interval, we use an exploration-exploitation approach a la Thompson sampling with an objective function based on the Fisher information of the generated observation. We show the merits of our methodology with numerical examples.


翻译:我们提出一种新的在线和适应性抽查方法,用于不同私人私人Bayesian在线估算人口静态参数。我们假定,从个人收到的敏感信息是按顺序顺序收集的,推断的目的是在现场估计这些人所属人口的一个静态参数。我们提议,根据顺序蒙特卡洛进行在线Bayesian估计。当个人在回答询问时提供敏感信息时,有必要用隐私保护噪音来干扰这些信息,以确保这些个人的隐私。扰动量与查询的敏感度成比例,通常由查询信息的范围决定。我们建议的抽查技术是适应先前收集的观察,以调整下一个个人的查询范围。我们的想法是,根据以往的观察,我们可以仔细安排下一个个人信息在被隐私保护噪音扰动之前的间隔。我们的目标是设计低度的预测查询,从而保持小的隐私保护噪音,从而使得能够更准确地估计下一个个人的查询范围。根据以往的观察,我们可以谨慎地安排下一个个人信息的间隔时间间隔,然后用隐私保护这些个人隐私的噪音。我们用一个更精确的深度的测量方法来设计预测性查询,同时使用一个更精确的深度的测量方法。我们用一个精确的深度的勘探方法,然后用一个精确的深度来判断我们所测测测测测测的深度。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员