Commonly adopted in the manufacturing and aerospace sectors, digital twin (DT) platforms are increasingly seen as a promising paradigm to control, monitor, and analyze software-based, "open", communication systems. Notably, DT platforms provide a sandbox in which to test artificial intelligence (AI) solutions for communication systems, potentially reducing the need to collect data and test algorithms in the field, i.e., on the physical twin (PT). A key challenge in the deployment of DT systems is to ensure that virtual control optimization, monitoring, and analysis at the DT are safe and reliable, avoiding incorrect decisions caused by "model exploitation". To address this challenge, this paper presents a general Bayesian framework with the aim of quantifying and accounting for model uncertainty at the DT that is caused by limitations in the amount and quality of data available at the DT from the PT. In the proposed framework, the DT builds a Bayesian model of the communication system, which is leveraged to enable core DT functionalities such as control via multi-agent reinforcement learning (MARL), monitoring of the PT for anomaly detection, prediction, data-collection optimization, and counterfactual analysis. To exemplify the application of the proposed framework, we specifically investigate a case-study system encompassing multiple sensing devices that report to a common receiver. Experimental results validate the effectiveness of the proposed Bayesian framework as compared to standard frequentist model-based solutions.
翻译:在制造和航空航天部门普遍采用的数字双星平台日益被视为控制、监测和分析基于软件的“开放”通信系统的有希望的模式,值得注意的是,数字双星平台提供了一个沙箱,用于测试通信系统的人工智能(AI)解决方案,有可能减少在实地收集数据和测试算法的需要,即在实物双星(PT)上收集数据和测试算法的需要。在部署DT系统方面的一个关键挑战是确保DT的虚拟控制优化、监测和分析是安全可靠的,避免“模型开发”造成的不正确的决定。 为了应对这一挑战,本文件提出了一个一般的Bayesian框架,目的是量化和核算DT的模型不确定性,因为TT提供的来自P的数据在数量和质量上受到限制。 在拟议框架中,DT建立了一个Bayesian通信系统模型,利用这一模型使基于核心的DT功能,例如通过多试剂强化学习进行控制(MARL),监测PT用于异常检测、预测、数据收集优化和反常态解决办法。本文提出了一个通用测试结果框架,具体用于我们提议的Basirnicalalal Reforstal Reforal exislum a exismal ex exup exup exup exupal exevactforislup exup exup ex exup ex exup exup ex exup exup exup exuplecking exup ex ex ex ex exuplupal ex exupal exmal exupal exmal 报告,具体用于我们我们我们将一个拟议的普通测试报告。