For Lagrange polynomial interpolation on open arcs $X=\gamma$ in $\mathbb{C}$, it is well-known that the Lebesgue constant for the family of Chebyshev points ${\bf{x}}_n:=\{x_{n,j}\}^{n}_{j=0}$ on $[-1,1]\subset \mathbb{R}$ has growth order of $O(log(n))$. The same growth order was shown in [45] for the Lebesgue constant of the family ${\bf {z^{**}_n}}:=\{z_{n,j}^{**}\}^{n}_{j=0}$ of some properly adjusted Fej\'er points on a rectifiable smooth open arc $\gamma\subset \mathbb{C}$. On the other hand, in our recent work [15], it was observed that if the smooth open arc $\gamma$ is replaced by an $L$-shape arc $\gamma_0 \subset \mathbb{C}$ consisting of two line segments, numerical experiments suggest that the Marcinkiewicz-Zygmund inequalities are no longer valid for the family of Fej\'er points ${\bf z}_n^{*}:=\{z_{n,j}^{*}\}^{n}_{j=0}$ on $\gamma$, and that the rate of growth for the corresponding Lebesgue constant $L_{{\bf {z}}^{*}_n}$ is as fast as $c\,log^2(n)$ for some constant $c>0$. The main objective of the present paper is 3-fold: firstly, it will be shown that for the special case of the $L$-shape arc $\gamma_0$ consisting of two line segments of the same length that meet at the angle of $\pi/2$, the growth rate of the Lebesgue constant $L_{{\bf {z}}_n^{*}}$ is at least as fast as $O(Log^2(n))$, with $\lim\sup \frac{L_{{\bf {z}}_n^{*}}}{log^2(n)} = \infty$; secondly, the corresponding (modified) Marcinkiewicz-Zygmund inequalities fail to hold; and thirdly, a proper adjustment ${\bf z}_n^{**}:=\{z_{n,j}^{**}\}^{n}_{j=0}$ of the Fej\'er points on $\gamma$ will be described to assure the growth rate of $L_{{\bf z}_n^{**}}$ to be exactly $O(Log^2(n))$.
翻译:对于开放弧值的拉格朗多式内插值 $2 {X/2}gamma美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元