We provide an interior point method based on quasi-Newton iterations, which only requires first-order access to a strongly self-concordant barrier function. To achieve this, we extend the techniques of Dunagan-Harvey [STOC '07] to maintain a preconditioner, while using only first-order information. We measure the quality of this preconditioner in terms of its relative excentricity to the unknown Hessian matrix, and we generalize these techniques to convex functions with a slowly-changing Hessian. We combine this with an interior point method to show that, given first-order access to an appropriate barrier function for a convex set $K$, we can solve well-conditioned linear optimization problems over $K$ to $\varepsilon$ precision in time $\widetilde{O}\left(\left(\mathcal{T}+n^{2}\right)\sqrt{n\nu}\log\left(1/\varepsilon\right)\right)$, where $\nu$ is the self-concordance parameter of the barrier function, and $\mathcal{T}$ is the time required to make a gradient query. As a consequence we show that: $\bullet$ Linear optimization over $n$-dimensional convex sets can be solved in time $\widetilde{O}\left(\left(\mathcal{T}n+n^{3}\right)\log\left(1/\varepsilon\right)\right)$. This parallels the running time achieved by state of the art algorithms for cutting plane methods, when replacing separation oracles with first-order oracles for an appropriate barrier function. $\bullet$ We can solve semidefinite programs involving $m\geq n$ matrices in $\mathbb{R}^{n\times n}$ in time $\widetilde{O}\left(mn^{4}+m^{1.25}n^{3.5}\log\left(1/\varepsilon\right)\right)$, improving over the state of the art algorithms, in the case where $m=\Omega\left(n^{\frac{3.5}{\omega-1.25}}\right)$. Along the way we develop a host of tools allowing us to control the evolution of our potential functions, using techniques from matrix analysis and Schur convexity.
翻译:我们提供了一种基于拟牛顿迭代的内点方法,它只需要强自共轭障碍函数的一阶访问。为了实现这一点,我们扩展了Dunagan-Harvey [STOC '07]的技术,以维护一个预处理器,同时只使用一阶信息。我们根据它相对于未知Hessian矩阵的独异性来衡量这个预处理器的质量,并将这些技术推广到具有缓慢变化Hessian的凸函数。我们将这个方法与内点方法相结合,以表明,给定对凸集K的适当障碍函数的一阶访问,我们可以在时间复杂度 $\widetilde{O}\left(\left(\mathcal{T}+n^{2}\right)\sqrt{n\nu}\log\left(1/\varepsilon\right)\right)$ 内将好条件的线性优化问题解决到 $\varepsilon$ 精度,其中 $\nu$ 是障碍函数的自共轭参数,$\mathcal{T}$ 是进行梯度查询所需的时间。因此,我们表明:$\bullet$ 只有使用适当障碍函数的一阶预算,就可以在时间复杂度为 $\widetilde{O}\left(\left(\mathcal{T}n+n^{3}\right)\log\left(1/\varepsilon\right)\right)$ 的情况下解决n维凸集上的线性优化问题。当用适当障碍函数的一阶预算替换分离预算时,这类似于最先进的切平面方法算法所实现的运行时间。$\bullet$ 可以在时间复杂度为 $\widetilde{O}\left(mn^{4}+m^{1.25}n^{3.5}\log\left(1/\varepsilon\right)\right)$ 的情况下解决m个大小为n的矩阵在 $\mathbb{R}^{n\times n}$ 上的半定规划问题,在 $m=\Omega\left(n^{\frac{3.5}{\omega-1.25}}\right)$ 的情况下改进了最先进的算法。在这一过程中,我们开发了一系列工具,允许我们控制潜能函数的演化,使用矩阵分析和舒尔凸性的技术。