We establish the uniform error bound of an exponential wave integrator Fourier pseudospectral (EWI-FP) method for the long-time dynamics of the nonlinear Schr\"odinger equation with wave operator (NLSW), in which the strength of the nonlinearity is characterized by $\varepsilon^{2p}$ with $\varepsilon \in (0, 1]$ a dimensionless parameter and $p \in \mathbb{N}^+$. When $0 < \varepsilon \ll 1$, the long-time dynamics of the problem is equivalent to that of the NLSW with $O(1)$-nonlinearity and $O(\varepsilon)$-initial data. The NLSW is numerically solved by the EWI-FP method which combines an exponential wave integrator for temporal discretization with the Fourier pseudospectral method in space. We rigorously establish the uniform $H^1$-error bound of the EWI-FP method at $O(h^{m-1}+\varepsilon^{2p-\beta}\tau^2)$ up to the time at $O(1/\varepsilon^{\beta})$ with $0 \leq \beta \leq 2p$, the mesh size $h$, time step $\tau$ and $m \geq 2$ an integer depending on the regularity of the exact solution. Finally, numerical results are provided to confirm our error estimates of the EWI-FP method and show that the convergence rate is sharp.
翻译:我们建立了指数波积分器傅里叶伪谱(EWI-FP)方法的均匀误差界,用于求解非线性薛定谔方程的长时间动力学,其中非线性度量由 $\varepsilon^{2p}$ 表示,其中 $\varepsilon \in (0, 1]$ 是一个无量纲参数,$p \in \mathbb{N}^+$。当 $0 < \varepsilon \ll 1$ 时,问题的长时间动力学等价于具有 $O(1)$-非线性度和 $O(\varepsilon)$-初始数据的非线性薛定谔方程。非线性薛定谔方程通过将指数波积分器用于时间离散化,并在空间中使用Fourier伪谱法来进行数值求解。我们在 $O(h^{m-1}+\varepsilon^{2p-\beta}\tau^2)$ 的时间上从严格的角度建立了EWI-FP方法的均匀 $H^1$-误差界,最终时间为 $O(1/\varepsilon^{\beta})$,其中 $0 \leq \beta \leq 2p$,网格大小为 $h$,时间步长为 $\tau$ 和 $m \geq 2$ 是一个取决于解的正则性的整数。最后,我们提供了数值结果,以确认EWI-FP方法的误差估计,并显示收敛速率为最优。