In this paper, we introduce and study a novel segmentation method for 4D images based on surface evolution governed by a nonlinear partial differential equation, the generalized subjective surface equation. The new method uses 4D digital image information and information from a thresholded 4D image in a local neighborhood. Thus, the 4D image segmentation is accomplished by defining the edge detector function's input as the weighted sum of the norm of gradients of presmoothed 4D image and norm of presmoothed thresholded 4D image in a local neighborhood. Additionally, we design and study a numerical method based on the finite volume approach for solving the new model. The reduced diamond cell approach is used for approximating the gradient of the solution. We use a semi-implicit finite volume scheme for the numerical discretization and show that our numerical scheme is unconditionally stable. The new 4D method was tested on artificial data and applied to real data representing 3D+time microscopy images of cell nuclei within the zebrafish pectoral fin and hind-brain. In a real application, processing 3D+time microscopy images amounts to solving a linear system with several billion unknowns and requires over $1000$ GB of memory; thus, it may not be possible to process these images on a serial machine without parallel implementation utilizing the MPI. Consequently, we develop and present in the paper OpenMP and MPI parallel implementation of designed algorithms. Finally, we include cell tracking results to show how our new method serves as a basis for finding trajectories of cells during embryogenesis.
翻译:在本文中, 我们引入并研究4D图像的新型分解方法, 以表面演化为基础, 由非线性部分偏差方程( 通用主观表面方程) 规范的表面演化为基础。 新方法使用 4D 数字图像信息, 以及本地邻居的 4D 图像 。 因此, 4D 图像分解方法是将边缘检测器的输入定义为预先摩擦的 4D 图像梯度的加权和 当地邻居中预先摩擦的 4D 门槛图像的规范 。 此外, 我们设计和研究一种基于解决新模型的有限体积方法的数字方法。 减少的钻石单元格方法用于接近解决方案的梯度 4D 4D 数字图像信息。 因此, 4D 4D 图像分解方法是将边缘检测器的参数定义为边缘 4D+ 标准, 并应用于代表 3D + 4D 缩略微镜像 的立体 。 在实际应用程序中, 处理 3D+ 时间 缩影细胞 方法 用于 解算结果, 因此, 需要 10 mill DNA 系统 进行 的 的新的 的 。