Social Commonsense Reasoning requires understanding of text, knowledge about social events and their pragmatic implications, as well as commonsense reasoning skills. In this work we propose a novel multi-head knowledge attention model that encodes semi-structured commonsense inference rules and learns to incorporate them in a transformer-based reasoning cell. We assess the model's performance on two tasks that require different reasoning skills: Abductive Natural Language Inference and Counterfactual Invariance Prediction as a new task. We show that our proposed model improves performance over strong state-of-the-art models (i.e., RoBERTa) across both reasoning tasks. Notably we are, to the best of our knowledge, the first to demonstrate that a model that learns to perform counterfactual reasoning helps predicting the best explanation in an abductive reasoning task. We validate the robustness of the model's reasoning capabilities by perturbing the knowledge and provide qualitative analysis on the model's knowledge incorporation capabilities.


翻译:社会常识推理要求理解文字,了解社会事件及其实际影响,以及常识推理技巧。在这项工作中,我们提出一个新的多头知识关注模式,将半结构的常识推理规则编码成半结构化的常识推理规则,并学会将其纳入以变压器为基础的推理单元。我们评估该模式在需要不同推理技巧的两项任务上的绩效:即:自然语言推断和反实际误判预测,作为一项新任务。我们表明,我们提议的模型在这两种推理任务中都比强势的先进模型(即罗贝塔)表现得更好。特别是,我们最了解的是,我们首先证明,一个学会进行反事实推理的模型有助于预测对引理任务的最佳解释。我们通过渗透知识,对模型的知识融入能力进行定性分析,来验证模型推理能力是否稳健。

4
下载
关闭预览

相关内容

【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
6+阅读 · 2017年12月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2019年11月28日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
6+阅读 · 2017年12月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员