Deep neural networks are known to be annotation-hungry. Numerous efforts have been devoted to reducing the annotation cost when learning with deep networks. Two prominent directions include learning with noisy labels and semi-supervised learning by exploiting unlabeled data. In this work, we propose DivideMix, a novel framework for learning with noisy labels by leveraging semi-supervised learning techniques. In particular, DivideMix models the per-sample loss distribution with a mixture model to dynamically divide the training data into a labeled set with clean samples and an unlabeled set with noisy samples, and trains the model on both the labeled and unlabeled data in a semi-supervised manner. To avoid confirmation bias, we simultaneously train two diverged networks where each network uses the dataset division from the other network. During the semi-supervised training phase, we improve the MixMatch strategy by performing label co-refinement and label co-guessing on labeled and unlabeled samples, respectively. Experiments on multiple benchmark datasets demonstrate substantial improvements over state-of-the-art methods. Code is available at https://github.com/LiJunnan1992/DivideMix .
翻译:深心神经网络已知是注解- 饥饿。 许多努力都致力于降低与深心网络学习时的注解成本。 两个突出的方向包括:通过开发未贴标签的数据,学习吵闹的标签和半监督的学习。 在这项工作中,我们提议了ExpleMix,这是一个通过利用半监督的学习技术,学习吵闹标签的新框架。特别是, 分解Mix 模型, 以混合模型来将每个抽样的损失分布动态地将培训数据分成一个有标签的、有干净样品和无标签的样本的一组, 并以半监督的方式对标签数据和无标签数据的模型进行培训。 为避免确认偏差,我们同时培训了两个不同的网络, 每个网络使用来自其他网络的数据集。 在半监督的培训阶段, 我们通过对标签和未贴标签的样本进行共同修补和标签共同标注, 改进了MixMatch战略。 在多个基准数据集上进行的实验显示在1992年州- 都拉斯/Mix 方法上的重大改进。