Model Agnostic Meta-Learning (MAML) has emerged as a standard framework for meta-learning, where a meta-model is learned with the ability of fast adapting to new tasks. However, as a double-looped optimization problem, MAML needs to differentiate through the whole inner-loop optimization path for every outer-loop training step, which may lead to both computational inefficiency and sub-optimal solutions. In this paper, we generalize MAML to allow meta-learning to be defined in function spaces, and propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK). Within this paradigm, we introduce two meta-learning algorithms in the RKHS, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework. We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory. Extensive experimental studies demonstrate advantages of our paradigm in both efficiency and quality of solutions compared to related meta-learning algorithms. Another interesting feature of our proposed methods is that they are demonstrated to be more robust to adversarial attacks and out-of-distribution adaptation than popular baselines, as demonstrated in our experiments.


翻译:模型元数据学习(MAML)已经成为元学习的标准框架,通过这种模式学习元模,能够快速适应新的任务。然而,作为一个双层优化问题,MAML需要通过每个外环培训步骤的整个内环优化路径来区分,这可能导致计算效率低下和亚最佳解决方案。在本文中,我们将MAML普遍化,允许在功能空间中定义元学习,并提出由元模型Neal Tangnel(NTKK)引领的Recent Kernel Hilbert空间(RKHS)的第一个元学习模式。在这个模式中,我们在RKHS中引入了两种元学习算法,不再像MAML框架那样需要亚于最佳的迭代内环适应。我们实现这一目标的方式是:(1) 以RKHS中快速适应的正规化器取代适应;和(2) 以NTK理论为基础解决适应的分析分析模式。

0
下载
关闭预览

相关内容

MAML(Model-Agnostic Meta-Learning)是元学习(Meta learning)最经典的几个算法之一,出自论文《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》。 原文地址:https://arxiv.org/abs/1703.03400
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
50+阅读 · 2020年12月14日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
150+阅读 · 2020年6月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员