We study single-phase flow in a fractured porous medium at a macroscopic scale that allows to model fractures individually. The flow is governed by Darcy's law in both fractures and porous matrix. We derive a new mixed-dimensional model, where fractures are represented by $(n-1)$-dimensional interfaces between $n$-dimensional subdomains for $n\ge 2$. In particular, we suggest a generalization of the model in [22] by accounting for asymmetric fractures with spatially varying aperture. Thus, the new model is particularly convenient for the description of surface roughness or for modeling curvilinear or winding fractures. The wellposedness of the new model is proven under appropriate conditions. Further, we formulate a discontinuous Galerkin discretization of the new model and validate the model by performing two- and three-dimensional numerical experiments.
翻译:我们在一个大型孔径尺度上研究破碎多孔介质的单相流,这种介质可以单独地模拟骨折。这种流动由达西定律调节,在骨折和多孔矩阵中都是如此。我们产生了一个新的多维模型,骨折由美元(n--1)美元代表,以2美元为单位的美元(n-Ge)维次域之间以美元(n-Ge)为单位代表。我们特别建议在[22]中对模型进行概括化,对具有空间差异孔径的不对称骨折进行核算。因此,新模型对于描述表面粗糙度或模拟卷状或卷动骨裂尤其方便。新模型的完善性在适当条件下得到证明。此外,我们通过进行二维和三维的数值实验,对新模型进行不连续的加勒金分解,并对模型进行验证。