When a parameter of interest is defined to be a nondifferentiable transform of a regular parameter, the parameter does not have an influence function, rendering the existing theory of semiparametric efficient estimation inapplicable. However, when the nondifferentiable transform is a known composite map of a continuous piecewise linear map with a single kink point and a translation-scale equivariant map, this paper demonstrates that it is possible to define a notion of asymptotic optimality of an estimator as an extension of the classical local asymptotic minimax estimation. This paper establishes a local asymptotic risk bound and proposes a general method to construct a local asymptotic minimax decision.
翻译:当一个感兴趣的参数被定义为正常参数的不可区分的变换时,该参数没有影响功能,使现有的半参数有效估算理论无法适用。然而,当非区别变换是一个已知的连续片断线性图的复合地图,配有一个单线条点和一个翻译尺度等同地图时,本文件表明,有可能将一个估计值的无症状最佳性概念定义为典型的当地微量估计的延伸。本文设定了一个局部的无症状风险捆绑,并提出了构建本地微量决定的一般方法。