Recent works on personalized text-to-image generation usually learn to bind a special token with specific subjects or styles of a few given images by tuning its embedding through gradient descent. It is natural to question whether we can optimize the textual inversions by only accessing the process of model inference. As only requiring the forward computation to determine the textual inversion retains the benefits of less GPU memory, simple deployment, and secure access for scalable models. In this paper, we introduce a \emph{gradient-free} framework to optimize the continuous textual inversion in an iterative evolutionary strategy. Specifically, we first initialize an appropriate token embedding for textual inversion with the consideration of visual and text vocabulary information. Then, we decompose the optimization of evolutionary strategy into dimension reduction of searching space and non-convex gradient-free optimization in subspace, which significantly accelerates the optimization process with negligible performance loss. Experiments in several applications demonstrate that the performance of text-to-image model equipped with our proposed gradient-free method is comparable to that of gradient-based counterparts with variant GPU/CPU platforms, flexible employment, as well as computational efficiency.


翻译:最近个性化文本到图像生成的相关工作通常通过通过优化其嵌入来绑定特定主题或风格的一些给定图像。自然而然地,我们可以质疑是否可以通过只访问模型推理过程来优化文本反演。只需要在前向计算中确定文本反演可以保留更少的GPU内存,简单的部署和安全的访问,适用于可扩展的模型。在本文中,我们提出了一个“无梯度”框架,用于迭代演化策略中的连续文本反演的优化。具体而言,我们首先使用视觉和文字词汇信息来初始化适当的文本反演的令牌嵌入。然后,我们将演化策略的优化分解为搜索空间的维度缩减和子空间内的非凸无梯度优化,这显著加速了优化过程,并几乎没有性能损失。在几个应用程序的实验中,展示了我们提出的无梯度方法所配备的文本到图像模型的性能与具有变体GPU / CPU平台的基于梯度的对比方法相当,具有灵活的就业机会和计算效率。

0
下载
关闭预览

相关内容

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
专知会员服务
76+阅读 · 2021年3月16日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
19+阅读 · 2021年1月14日
VIP会员
相关VIP内容
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
专知会员服务
76+阅读 · 2021年3月16日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员