This paper generalizes the notion of sufficiency for estimation problems beyond maximum likelihood. In particular, we consider estimation problems based on Jones et al. and Basu et al. likelihood functions that are popular among distance-based robust inference methods. We first characterize the probability distributions that always have a fixed number of sufficient statistics with respect to these likelihood functions. These distributions are power-law extensions of the usual exponential family and contain Student distributions as special case. We then extend the notion of minimal sufficient statistics and compute it for these power-law families. Finally, we establish a Rao-Blackwell type theorem for finding best estimators for a power-law family. This enables us to derive certain generalized Cram\'er-Rao lower bounds for power-law families.
翻译:本文概括了估算问题超出最大可能性的充分性概念, 特别是, 我们考虑基于琼斯等人和巴苏等人的估算问题。 我们首先将基于基于远程的稳健推断法中流行的概率函数进行估算。 我们首先将总有固定数量充足统计数据的概率分布定性为这些概率函数。 这些分布是通常指数式家庭的权力法扩展, 并将学生分布作为特例。 然后我们扩展了最低充足统计数据的概念, 并为这些权力法系家庭计算。 最后, 我们建立了Rao- Blackwell 模式, 以寻找权力法系家庭的最佳估计数据。 这使我们能够为权力法系家庭得出某些普遍的Cram\'er-Rao下限 。