Statistical modeling of rainfall data is an active research area in agro-meteorology. The most common models fitted to such datasets are exponential, gamma, log-normal, and Weibull distributions. As an alternative to some of these models, the generalized exponential (GE) distribution was proposed by Gupta and Kundu (2001, Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions, Biometrical Journal). Rainfall (specifically for short periods) datasets often include outliers and thus a proper robust parameter estimation procedure is necessary. Here we use the popular minimum density power divergence estimation (MDPDE) procedure developed by Basu et al. (1998, Robust and Efficient Estimation by Minimising a Density Power Divergence, Biometrika) for estimating the GE parameters. We derive the analytical expressions for the estimating equations and asymptotic distributions. We compare MDPDE with maximum likelihood estimation analytically in terms of robustness through an influence function analysis. Besides, we study the asymptotic relative efficiency of MDPDE analytically for different parameter settings. We apply the proposed technique to some simulated datasets and to one monthly and one annual rainfall dataset from Texas, United States. The results indicate superior performance of MDPDE compared to the other existing estimation techniques in most of the scenarios.
翻译:降雨数据的统计模型是农业气象学中一个积极的研究领域,适合这类数据集的最常见模型是指数、伽马、日志正常和韦布尔分布。作为其中一些模型的替代方案,Gupta和Kundu(2001年,《有名的光学大家庭:Gamma和Weibull发行的替代办法》,《生物计量学杂志》)提出了普遍指数分布建议。降雨(具体而言,短期内)数据集通常包括外部值,因此需要一个适当的稳健参数估计程序。我们在这里使用由Basu等人开发的流行的最小密度功率差异估计(MDPDE)程序(1998年,通过微调密度功率差异、Biomometrika)作为这些模型的替代。我们从估算方程式和微量分布的分析表达出分析的分析性表达方式。我们通过影响功能分析,将MDPDE与最有可能进行的分析性强度的分析估算。此外,我们还研究了巴苏等人等人等人开发的流行的最低密度能量估计(MDPDE)程序(1998年,通过微调调度数据的现有数据比重比重比重的州数据,我们从一个现有数据模拟数据测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测测了目前数据。