Matrix splitting iteration methods play a vital role in solving large sparse linear systems. Their performance heavily depends on the splitting parameters, however, the approach of selecting optimal splitting parameters has not been well developed. In this paper, we present a multitask kernel-learning parameter prediction method to automatically obtain relatively optimal splitting parameters, which contains simultaneous multiple parameters prediction and a data-driven kernel learning. For solving time-dependent linear systems, including linear differential systems and linear matrix systems, we give a new matrix splitting Kronecker product method, as well as its convergence analysis and preconditioning strategy. Numerical results illustrate our methods can save an enormous amount of time in selecting the relatively optimal splitting parameters compared with the exists methods. Moreover, our iteration method as a preconditioner can effectively accelerate GMRES. As the dimension of systems increases, all the advantages of our approaches becomes significantly. Especially, for solving the differential Sylvester matrix equation, the speedup ratio can reach tens to hundreds of times when the scale of the system is larger than one hundred thousand.


翻译:矩阵分层迭代方法在解决大量稀疏线性系统方面发挥着关键作用。 但是,它们的性能在很大程度上取决于分层参数,但是,选择最佳分解参数的方法还没有很好地发展。 在本文件中,我们提出了一个多任务内核学习参数预测方法,以自动获得相对最佳的分解参数,其中包括同时的多个参数预测和数据驱动的内核学习。为了解决时间依赖线性系统,包括线性差分系统和线性矩阵系统,我们给出一个新的矩阵分解克罗内尔产品方法及其趋同分析和先决条件战略。数字结果表明,我们的方法可以节省大量时间选择相对最佳的分解参数,而与现有方法相比。此外,我们作为先决条件的迭代方法可以有效地加速GMRES。随着系统层面的扩大,我们方法的所有优势都变得非常显著。特别是,在解决差别的Sylvester矩阵方程时,当系统的规模大于10万时,加速率可以达到数十万至数百倍。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员