Deep learning achieves outstanding results in many machine learning tasks. Nevertheless, it is vulnerable to backdoor attacks that modify the training set to embed a secret functionality in the trained model. The modified training samples have a secret property, i.e., a trigger. At inference time, the secret functionality is activated when the input contains the trigger, while the model functions correctly in other cases. While there are many known backdoor attacks (and defenses), deploying a stealthy attack is still far from trivial. Successfully creating backdoor triggers heavily depends on numerous parameters. Unfortunately, research has not yet determined which parameters contribute most to the attack performance. This paper systematically analyzes the most relevant parameters for the backdoor attacks, i.e., trigger size, position, color, and poisoning rate. Using transfer learning, which is very common in computer vision, we evaluate the attack on numerous state-of-the-art models (ResNet, VGG, AlexNet, and GoogLeNet) and datasets (MNIST, CIFAR10, and TinyImageNet). Our attacks cover the majority of backdoor settings in research, providing concrete directions for future works. Our code is publicly available to facilitate the reproducibility of our results.
翻译:深层学习在许多机器学习任务中取得了杰出的成果。 然而, 很容易发生后门攻击, 从而改变培训设置, 将一个秘密功能嵌入到经过训练的模式中。 修改的培训样本具有秘密属性, 即触发器。 推论时间, 当输入包含触发器时, 秘密功能会启动, 而模型功能会在其他情况下正确。 虽然有许多已知的后门攻击( 和防御), 部署隐形攻击远非微不足道。 成功制造后门触发器在很大程度上取决于许多参数 。 不幸的是, 研究尚未确定哪些参数对攻击性能贡献最大 。 本文系统分析后门攻击的最相关参数, 即触发大小、 位置、 颜色和中毒率。 使用计算机愿景中非常常见的传输学习, 我们评估了对许多最新模型( ResNet、 VGG、 AlexNet 和 GoogLeNet) 和数据集( MNIST、 CIFAR10 和 TyIMageNet) 的攻击( Net) 。 我们的攻击覆盖了大多数研究后门环境, 提供未来作品的具体方向。