Data augmentation has been widely used in image data and linguistic data but remains under-explored for Graph Neural Networks (GNNs). Existing methods focus on augmenting the graph data from a global perspective and largely fall into two genres: structural manipulation and adversarial training with feature noise injection. However, recent graph data augmentation methods ignore the importance of local information for the GNNs' message passing mechanism. In this work, we introduce the local augmentation, which enhances the locality of node representations by their subgraph structures. Specifically, we model the data augmentation as a feature generation process. Given a node's features, our local augmentation approach learns the conditional distribution of its neighbors' features and generates more neighbors' features to boost the performance of downstream tasks. Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner. Extensive experiments and analyses show that local augmentation consistently yields performance improvement for various GNN architectures across a diverse set of benchmarks.
翻译:在图像数据和语言数据中广泛使用了增强数据的方法,但在图形神经网络(GNNs)中仍然未得到充分探索。现有方法侧重于从全球角度扩大图形数据,主要分为两种类型:结构操纵和带有特别噪音注入的对抗性培训。然而,最近的图形数据增强方法忽视了当地信息对GNS信息传递机制的重要性。在这项工作中,我们引入了本地增强,通过子图结构增加节点表示位置。具体地说,我们将数据增强作为特征生成过程进行模型。鉴于节点的特点,我们本地增强方法学习其邻居特征的有条件分布,并生成更多的邻居特征,以促进下游任务的业绩。根据本地增强,我们进一步设计了一个新的框架:LA-GNN,它可以以插接和播放方式适用于任何GNN模型。广泛的实验和分析表明,本地增强持续地提高各种GNN结构在一系列不同的基准下的业绩。