Data augmentation has been widely used in image data and linguistic data but remains under-explored for Graph Neural Networks (GNNs). Existing methods focus on augmenting the graph data from a global perspective and largely fall into two genres: structural manipulation and adversarial training with feature noise injection. However, recent graph data augmentation methods ignore the importance of local information for the GNNs' message passing mechanism. In this work, we introduce the local augmentation, which enhances the locality of node representations by their subgraph structures. Specifically, we model the data augmentation as a feature generation process. Given a node's features, our local augmentation approach learns the conditional distribution of its neighbors' features and generates more neighbors' features to boost the performance of downstream tasks. Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner. Extensive experiments and analyses show that local augmentation consistently yields performance improvement for various GNN architectures across a diverse set of benchmarks.


翻译:在图像数据和语言数据中广泛使用了增强数据的方法,但在图形神经网络(GNNs)中仍然未得到充分探索。现有方法侧重于从全球角度扩大图形数据,主要分为两种类型:结构操纵和带有特别噪音注入的对抗性培训。然而,最近的图形数据增强方法忽视了当地信息对GNS信息传递机制的重要性。在这项工作中,我们引入了本地增强,通过子图结构增加节点表示位置。具体地说,我们将数据增强作为特征生成过程进行模型。鉴于节点的特点,我们本地增强方法学习其邻居特征的有条件分布,并生成更多的邻居特征,以促进下游任务的业绩。根据本地增强,我们进一步设计了一个新的框架:LA-GNN,它可以以插接和播放方式适用于任何GNN模型。广泛的实验和分析表明,本地增强持续地提高各种GNN结构在一系列不同的基准下的业绩。

1
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
专知会员服务
108+阅读 · 2020年12月21日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2020年12月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年4月29日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
38+阅读 · 2020年12月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年4月29日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
15+阅读 · 2020年2月5日
Top
微信扫码咨询专知VIP会员