论文链接:https://www.zhuanzhi.ai/paper/5e4dd4fd6b06fc88a7d86e4dc50687c6

简介:数据增强已被广泛用于提高机器学习模型的通用性。但是,相对较少的工作研究图形的数据扩充。这在很大程度上是由于图的复杂非欧几里得结构限制了可能的操纵操作。视觉和语言中常用的增强操作没有图形类似物。在改进半监督节点分类的背景下,我们的工作研究了图神经网络(GNN)的图数据扩充。我们讨论了图数据扩充的实践和理论动机,考虑因素和策略。我们的工作表明,神经边缘预测器可以有效地编码类同质结构,以在给定的图结构中促进类内边缘和降级类间边缘,并且我们的主要贡献是引入了GAug图数据扩充框架,该框架利用这些见解来提高性能通过边缘预测的基于GNN的节点分类在多个基准上进行的广泛实验表明,通过GAug进行的增强可提高GNN架构和数据集的性能。

成为VIP会员查看完整内容
108

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
AAAI2021 | 学习预训练图神经网络
专知会员服务
116+阅读 · 2021年1月28日
【AAAI2021-斯坦福】身份感知的图神经网络
专知会员服务
39+阅读 · 2021年1月27日
【AAAI2021】层次推理图神经网络
专知会员服务
70+阅读 · 2020年12月27日
专知会员服务
47+阅读 · 2020年12月20日
【AAAI2021】 层次图胶囊网络
专知会员服务
84+阅读 · 2020年12月18日
专知会员服务
38+阅读 · 2020年11月24日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
84+阅读 · 2020年11月19日
【NeurIPS2020】图神经网络中的池化再思考
专知会员服务
52+阅读 · 2020年10月25日
注意力图神经网络的小样本学习
专知会员服务
192+阅读 · 2020年7月16日
【KDD2020】图神经网络:基础与应用,322页ppt
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
ICML2020 图神经网络的预训练
图与推荐
12+阅读 · 2020年4月4日
数据增强文献综述
极市平台
20+阅读 · 2019年8月4日
Arxiv
38+阅读 · 2020年12月2日
Does Data Augmentation Benefit from Split BatchNorms
Arxiv
3+阅读 · 2020年10月15日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
15+阅读 · 2020年2月5日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关VIP内容
AAAI2021 | 学习预训练图神经网络
专知会员服务
116+阅读 · 2021年1月28日
【AAAI2021-斯坦福】身份感知的图神经网络
专知会员服务
39+阅读 · 2021年1月27日
【AAAI2021】层次推理图神经网络
专知会员服务
70+阅读 · 2020年12月27日
专知会员服务
47+阅读 · 2020年12月20日
【AAAI2021】 层次图胶囊网络
专知会员服务
84+阅读 · 2020年12月18日
专知会员服务
38+阅读 · 2020年11月24日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
84+阅读 · 2020年11月19日
【NeurIPS2020】图神经网络中的池化再思考
专知会员服务
52+阅读 · 2020年10月25日
注意力图神经网络的小样本学习
专知会员服务
192+阅读 · 2020年7月16日
相关资讯
相关论文
Arxiv
38+阅读 · 2020年12月2日
Does Data Augmentation Benefit from Split BatchNorms
Arxiv
3+阅读 · 2020年10月15日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
15+阅读 · 2020年2月5日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
10+阅读 · 2019年2月19日
微信扫码咨询专知VIP会员