Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a stream phase. This structure, despite the well-known advantages from a computational standpoint, is not suitable to construct a rigorous notion of consistency with respect to the target equations and to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to the von Neumann stability analysis of their Finite Difference counterpart. More generally, the usual tools for the analysis of Finite Difference schemes are now readily available to study lattice Boltzmann schemes. Their relevance is verified by means of numerical illustrations.
翻译:Lattice Boltzmann计划依赖于扩大目标问题的规模,以便以一种高度平行和高效的动态式方式解决PDE,将其分成一个碰撞和流相阶段。尽管从计算角度看,这一结构是众所周知的优势,但并不适合在目标方程上构建一个严格的一致概念,并提供一个精确的稳定概念。为了缓解这些短缺并引入一个严格的框架,我们证明,任何lattice Boltzmann计划都可以重新写成一个相对应的多步骤固定差异计划,在受保护变量上,通过设计一种基于操作者、通货代数和多面体的合适的形式主义来实现。因此,相应的Finite Indiction计划的一致性概念不适宜于在线性 Lattice Boltzmann 计划案例中援引Lax-Richtmyer 理论的严格概念。此外,我们表明,对Lattice Boltzmann 计划经常使用类似于的稳定性分析方法,这完全与对Non Neumann 的固定变量变量对应方进行的稳定分析相吻合。更一般地说,它们的“Finticre Distrual ” 计划是常规的可验证工具。