Most real-time autonomous robot applications require a robot to traverse through a dynamic space for a long time. In some cases, a robot needs to work in the same environment. Such applications give rise to the problem of a life-long SLAM system. Life-long SLAM presents two main challenges i.e. the tracking should not fail in a dynamic environment and the need for a robust and efficient mapping strategy. The system should update maps with new information; while also keeping track of older observations. But, mapping for a long time can require higher computational requirements. In this paper, we propose a solution to the problem of life-long SLAM. We represent the global map as a set of rasterized images of local maps along with a map management system responsible for updating local maps and keeping track of older values. We also present an efficient approach of using the bag of visual words method for loop closure detection and relocalization. We evaluate the performance of our system on the KITTI dataset and an indoor dataset. Our loop closure system reported recall and precision of above 90 percent. The computational cost of our system is much lower as compared to state-of-the-art methods. Our method reports lower computational requirements even for long-term operation.


翻译:最实时自主的机器人应用程序要求机器人在动态空间穿行很长一段时间。 在某些情况下, 机器人需要在同一环境中工作。 此类应用程序引发了寿命长的 SLAM 系统问题。 寿命长的 SLAM 提出了两大挑战, 即: 在动态环境中跟踪不应该失败, 并且需要一个稳健有效的绘图战略。 系统应该用新的信息更新地图; 同时跟踪老旧的观测结果。 但是, 长期的绘图可能需要更高的计算要求。 在本文中, 我们建议了解决寿命长的 SLAM 问题的办法。 我们把全球地图与一个负责更新本地地图和跟踪旧值的地图管理系统一起, 代表了一套地方地图的光化图像。 我们还提出了一个高效的方法, 使用一包视觉文字方法来进行环闭探测和重新定位。 我们用KITTI 数据集和室内数据集来评估我们的系统性能。 我们的循环关闭系统报告了超过90%的回溯和精确度。 我们系统的计算成本甚至低于州级的计算方法。

0
下载
关闭预览

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
专知会员服务
28+阅读 · 2021年6月4日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
15+阅读 · 2021年4月12日
专知会员服务
86+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
已删除
将门创投
4+阅读 · 2018年7月31日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
已删除
将门创投
4+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员