Most real-time autonomous robot applications require a robot to traverse through a dynamic space for a long time. In some cases, a robot needs to work in the same environment. Such applications give rise to the problem of a life-long SLAM system. Life-long SLAM presents two main challenges i.e. the tracking should not fail in a dynamic environment and the need for a robust and efficient mapping strategy. The system should update maps with new information; while also keeping track of older observations. But, mapping for a long time can require higher computational requirements. In this paper, we propose a solution to the problem of life-long SLAM. We represent the global map as a set of rasterized images of local maps along with a map management system responsible for updating local maps and keeping track of older values. We also present an efficient approach of using the bag of visual words method for loop closure detection and relocalization. We evaluate the performance of our system on the KITTI dataset and an indoor dataset. Our loop closure system reported recall and precision of above 90 percent. The computational cost of our system is much lower as compared to state-of-the-art methods. Our method reports lower computational requirements even for long-term operation.
翻译:最实时自主的机器人应用程序要求机器人在动态空间穿行很长一段时间。 在某些情况下, 机器人需要在同一环境中工作。 此类应用程序引发了寿命长的 SLAM 系统问题。 寿命长的 SLAM 提出了两大挑战, 即: 在动态环境中跟踪不应该失败, 并且需要一个稳健有效的绘图战略。 系统应该用新的信息更新地图; 同时跟踪老旧的观测结果。 但是, 长期的绘图可能需要更高的计算要求。 在本文中, 我们建议了解决寿命长的 SLAM 问题的办法。 我们把全球地图与一个负责更新本地地图和跟踪旧值的地图管理系统一起, 代表了一套地方地图的光化图像。 我们还提出了一个高效的方法, 使用一包视觉文字方法来进行环闭探测和重新定位。 我们用KITTI 数据集和室内数据集来评估我们的系统性能。 我们的循环关闭系统报告了超过90%的回溯和精确度。 我们系统的计算成本甚至低于州级的计算方法。