State estimation with sensors is essential for mobile robots. Due to different performance of sensors in different environments, how to fuse measurements of various sensors is a problem. In this paper, we propose a tightly coupled multi-sensor fusion framework, Lvio-Fusion, which fuses stereo camera, Lidar, IMU, and GPS based on the graph optimization. Especially for urban traffic scenes, we introduce a segmented global pose graph optimization with GPS and loop-closure, which can eliminate accumulated drifts. Additionally, we creatively use a actor-critic method in reinforcement learning to adaptively adjust sensors' weight. After training, actor-critic agent can provide the system better and dynamic sensors' weight. We evaluate the performance of our system on public datasets and compare it with other state-of-the-art methods, which shows that the proposed method achieves high estimation accuracy and robustness to various environments. And our implementations are open source and highly scalable.
翻译:使用传感器进行国家估测对于移动机器人至关重要。 由于传感器在不同环境中的不同性能, 如何使各种传感器的测量引信引信是一个问题。 在本文中, 我们提出一个紧密结合的多传感器聚变框架, Lvio- Fusion, 它将立体摄像机、 Lidar、 IMU 和基于图形优化的全球定位系统、 Lidar 、 IMU 和 GPS 连接起来。 特别是对于城市交通场景, 我们引入一个有条块的GPS 和 环圈闭合的全局图像优化, 这可以消除累积的漂浮。 此外, 我们创造性地使用一种演员- 批评方法来强化学习适应性调整传感器的重量。 经过培训后, 演员- critic 剂可以提供系统更好和动态传感器的重量 。 我们评估我们的系统在公共数据集上的性能, 并与其他最先进的方法进行比较, 这表明, 拟议的方法可以在不同环境中实现高估测算精度和稳健度。 我们的操作方式是开放的源和高度可缩缩的 。