Linear Recurrence Sequences (LRS) are a fundamental mathematical primitive for a plethora of applications such as the verification of probabilistic systems, model checking, computational biology, and economics. Positivity (are all terms of the given LRS non-negative?) and Ultimate Positivity (are all but finitely many terms of the given LRS non-negative?) are important open number-theoretic decision problems. Recently, the robust versions of these problems, that ask whether the LRS is (Ultimately) Positive despite small perturbations to its initialisation, have gained attention as a means to model the imprecision that arises in practical settings. However, the state of the art is ill-equipped to reason about imprecision when its extent is explicitly specified. In this paper, we consider Robust Positivity and Ultimate Positivity problems where the neighbourhood of the initialisation, expressed in a natural and general format, is also part of the input. We contribute by proving sharp decidability results: decision procedures at orders our techniques are unable to handle for general LRS would entail significant number-theoretic breakthroughs.
翻译:暂无翻译