We consider the online monitoring of multivariate streaming data for changes that are characterized by an unknown subspace structure manifested in the covariance matrix. In particular, we consider the covariance structure changes from an identity matrix to an unknown spiked covariance model. We assume the post-change distribution is unknown, and propose two detection procedures: the Largest-Eigenvalue Shewhart chart and the Subspace-CUSUM detection procedure. We present theoretical approximations to the average run length (ARL) and the expected detection delay (EDD) for the Largest-Eigenvalue Shewhart chart and also provide analysis for tuning parameters of the Subspace-CUSUM procedure. The performance of the proposed methods is illustrated using simulation and real data for human gesture detection and seismic event detection.
翻译:我们考虑对多变量流数据进行在线监测,以了解以共变矩阵中显示的未知子空间结构为特点的变化。我们特别考虑共变结构从身份矩阵转变为未知的奇特共变模型。我们假设变化后分布未知,并提议两个探测程序:大额Egenvalue Shewhart 图表和Subspace-CUSUM探测程序。我们提出了平均运行长度(ARL)的理论近似值,以及大型Eigenvalue Shewhart图的预期探测延迟(EDD),并为子空间-CUSUM程序的调控参数提供了分析。建议方法的性能通过模拟和真实数据加以说明,用于人类动作探测和地震事件探测。