This paper develops change-point methods for the time-varying spectrum of a time series. We focus on time series with a bounded spectral density that change smoothly under the null hypothesis but exhibits change-points or becomes less smooth under the alternative. We provide a general theory for inference about the degree of smoothness of the spectral density over time. We address two local problems. The first is the detection of discontinuities (or breaks) in the spectrum at unknown dates and frequencies. The second involves abrupt yet continuous changes in the spectrum over a short time period at an unknown frequency without signifying a break. We consider estimation and minimax-optimal testing. We determine the optimal rate for the minimax distinguishable boundary, i.e., the minimum break magnitude such that we are still able to uniformly control type I and type II errors. We propose a novel procedure for the estimation of the change-points based on a wild sequential top-down algorithm and show its consistency under shrinking shifts and possibly growing number of change-points. Our method can be used across many fields and a companion program is made available in popular software packages.
翻译:本文为时间序列中时间变化频谱开发了变化点方法。 我们关注时间序列, 其带宽频密度在无效假设下变化顺利, 但是在替代假设下显示变化点或变得不那么顺利。 我们为推断光谱密度随时间变化的平滑度提供了一个一般理论。 我们处理两个局部问题。 第一个是检测频谱在未知日期和频率上的不连续(或断裂) 。 第二个是在一个未知的频率, 在一个不为人知的频率的很短时间段里突然但连续地改变频谱。 我们考虑估算和微缩最大最佳测试。 我们决定了最小最大可辨别边界的最佳速率, 也就是我们仍然能够统一控制I型和第二类错误的最低断裂度。 我们建议了一个基于狂野的上下级算法来估计变化点的新程序, 并显示其一致性, 在缩小变化和可能增加的变化点中。 我们的方法可以在许多领域使用, 并且一个配套的程序可以在大众软件包中提供。