Explicitly using the block structure of the unknown signal can achieve better reconstruction performance in compressive sensing. Theoretically, an unknown signal with block structure can be accurately recovered from a few number of under-determined linear measurements provided that it is sufficiently block sparse. From the practical point of view, a severe concern is that the block sparse level appears often unknown. In this paper, we introduce a soft measure of block sparsity $k_\alpha(\mathbf{x})=\left(\lVert\mathbf{x}\rVert_{2,\alpha}/\lVert\mathbf{x}\rVert_{2,1}\right)^{\frac{\alpha}{1-\alpha}}$ with $\alpha\in[0,\infty]$, and propose an estimation procedure by using multivariate centered isotropic symmetric $\alpha$-stable random projections. The limiting distribution of the estimator is established. Simulations are conducted to illustrate our theoretical results.
翻译:使用未知信号的块状结构可以实现更好的压缩感应重建性能 。 理论上, 一个带块状结构的未知信号可以从几处不确定的线性测量中准确恢复, 只要它有足够的块状分散。 从实际的角度来看, 一个严重的关注是块稀疏程度似乎往往不为人所知。 在本文中, 我们引入一个软度度量的块状聚度 $k ⁇ alpha (\mathbf{x{rVert}}}\lVert\mathb{2,\alpha}/\lVert\mathb{xvrVert}2,1 ⁇ r_rvrvärt)\\\\\\\rpha_1\right)\\\\\\pha_lpha\$$$\ alpha\ $\ 0. 0\ inftytyty], 并提议一个使用多变量中心异调的 $\ alpha$\pha$- stable 随机预测的估算程序 。 设置了测量参数的分布。 。 将限制 估测测测测算器 。 。 。