The generalization power of deep-learning models is dependent on rich-labelled data. This supervision using large-scaled annotated information is restrictive in most real-world scenarios where data collection and their annotation involve huge cost. Various domain adaptation techniques exist in literature that bridge this distribution discrepancy. However, a majority of these models require the label sets of both the domains to be identical. To tackle a more practical and challenging scenario, we formulate the problem statement from a partial domain adaptation perspective, where the source label set is a super set of the target label set. Driven by the motivation that image styles are private to each domain, in this work, we develop a method that identifies outlier classes exclusively from image content information and train a label classifier exclusively on class-content from source images. Additionally, elimination of negative transfer of samples from classes private to the source domain is achieved by transforming the soft class-level weights into two clusters, 0 (outlier source classes) and 1 (shared classes) by maximizing the between-cluster variance between them.
翻译:深层学习模型的普及能力取决于富含标签的数据。 这种使用大规模附加说明信息的监管在多数现实世界情景中是限制性的,因为数据收集及其批注涉及巨额费用。 文献中存在着各种领域适应技术,可以弥合这种分布差异。 但是,大多数这些模型要求这两个域的标签组完全相同。 为了解决更实际和更具挑战性的假设,我们从部分领域适应的角度来拟订问题说明,其中源标签组是目标标签组的超级组。 由图像样式是私有的动机驱动,在这项工作中,我们开发了一种方法,从图像内容信息中找出更高级的类,并专门培训一个分类标签分类器,从源图像中的分类器专门用于分类内容。 此外,通过将软级加权转换成两个组群,即0类(外部源类)和1类(共有类),通过尽可能扩大这些组群之间的差异,消除了从私有类别向源域的负面转移样品。