We systematically evaluate the performance of deep learning models in the presence of diseases not labeled for or present during training. First, we evaluate whether deep learning models trained on a subset of diseases (seen diseases) can detect the presence of any one of a larger set of diseases. We find that models tend to falsely classify diseases outside of the subset (unseen diseases) as "no disease". Second, we evaluate whether models trained on seen diseases can detect seen diseases when co-occurring with diseases outside the subset (unseen diseases). We find that models are still able to detect seen diseases even when co-occurring with unseen diseases. Third, we evaluate whether feature representations learned by models may be used to detect the presence of unseen diseases given a small labeled set of unseen diseases. We find that the penultimate layer of the deep neural network provides useful features for unseen disease detection. Our results can inform the safe clinical deployment of deep learning models trained on a non-exhaustive set of disease classes.


翻译:我们系统地评价深层次学习模式在培训期间未标明或存在的疾病方面的表现。首先,我们评估在一组疾病(见疾病)方面受过训练的深层次学习模式能否发现存在较大系列疾病中的任何一个。我们发现,模型往往错误地将子类以外的疾病(见不到疾病)归类为“无疾病”。第二,我们评估在与子类(见不到疾病)共同发生的疾病(见不到疾病)方面受过训练的关于已发现疾病的模型是否能够检测到已发现的疾病。我们发现,即使在与不可见疾病共同发生的情况下,模型仍然能够检测到已发现的疾病。第三,我们评估模型所学的特征表现是否可用于在少量的隐性疾病中发现未见疾病的存在。我们发现,深层神经网络的倒数层为不可见疾病检测提供了有用的特征。我们的结果可以证明,在临床安全部署经过非详尽的疾病分类培训的深层学习模式。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月30日
Arxiv
17+阅读 · 2021年2月15日
Anomalous Instance Detection in Deep Learning: A Survey
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年4月30日
Arxiv
17+阅读 · 2021年2月15日
Anomalous Instance Detection in Deep Learning: A Survey
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
4+阅读 · 2017年11月14日
Top
微信扫码咨询专知VIP会员