Neural approaches have become very popular in the domain of Question Answering, however they require a large amount of annotated data. Furthermore, they often yield very good performance but only in the domain they were trained on. In this work we propose a novel approach that combines data augmentation via question-answer generation with Active Learning to improve performance in low resource settings, where the target domains are diverse in terms of difficulty and similarity to the source domain. We also investigate Active Learning for question answering in different stages, overall reducing the annotation effort of humans. For this purpose, we consider target domains in realistic settings, with an extremely low amount of annotated samples but with many unlabeled documents, which we assume can be obtained with little effort. Additionally, we assume sufficient amount of labeled data from the source domain is available. We perform extensive experiments to find the best setup for incorporating domain experts. Our findings show that our novel approach, where humans are incorporated as early as possible in the process, boosts performance in the low-resource, domain-specific setting, allowing for low-labeling-effort question answering systems in new, specialized domains. They further demonstrate how human annotation affects the performance of QA depending on the stage it is performed.


翻译:在问答领域,神经方法已变得非常流行,然而,它们需要大量附加说明的数据。此外,它们往往产生非常良好的性能,但只在它们受过训练的领域才产生非常良好的性能。在这项工作中,我们提出一种新的方法,通过问答生成数据增强与积极学习相结合,以改善在低资源环境中的性能,因为目标领域在难度和与源域相似方面各不相同。我们还调查了在不同阶段进行问答的积极性学习,全面减少了人类的批注努力。为此,我们考虑在现实环境中的目标领域,有极低的附加说明的样本,但有许多没有标签的文件,我们假设这些样本可以很少努力地获得。此外,我们假设可以从源领域获得足够的贴标签的数据。我们进行了广泛的实验,以找到将域专家纳入其中的最佳设置。我们的研究结果表明,我们的新方法,即人类尽早融入这一过程,提高了低资源、特定领域环境的性能,允许在新的、专门领域低标记的口供系统使用。它们进一步展示了人类业绩如何影响它的新阶段。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月30日
Arxiv
0+阅读 · 2023年1月28日
Arxiv
0+阅读 · 2023年1月27日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员