This paper focuses on the data augmentation for low-resource NLP tasks where the training set is limited. The existing solutions either leverage task-independent heuristic rules (e.g., Synonym Replacement) or fine-tune general-purpose pre-trained language models (e.g., GPT2) using the limited training instances to produce new synthetic data. Consequently, they have trivial task-specific knowledge and are limited to yielding low-quality synthetic data. To combat this issue, we propose Knowledge Mixture Data Augmentation Model (KnowDA) which is an Seq2Seq language model pre-trained on a mixture of diverse NLP tasks under a novel framework of Knowledge Mixture Training (KoMT). The goal of KoMT is to condense diverse NLP task-specific knowledge into the single KnowDA model (i.e., all-in-one) such that KnowDA could utilize these knowledge to quickly grasp the inherent synthesis law of the target task through limited training instances. Specifically, KoMT reformulates input examples from various heterogeneous NLP tasks into a unified text-to-text format, and employs denoising training objectives in different granularity to learn to reconstruct partial or complete samples. To the best of our knowledge, we are the first attempt to apply 100+ NLP multi-task training for data augmentation. Extensive experiments show that i) the synthetic data produced by KnowDA successfully improves performance of the strong pre-trained language models (i.e., Bert, ALBert and Deberta) by a large margin on the low-resource NLP benchmark FewGLUE, CoNLL'03 and WikiAnn; ii) KnowDA successfully transfers the task knowledge to NLP tasks whose types are seen and unseen in KoMT.


翻译:本文侧重于低资源 NLP 任务中培训范围有限的低资源 NLP 任务的数据增强。 现有的解决方案要么利用任务独立的 NLP 任务增强数据, 要么利用任务独立的 NLP 任务增强数据( 如 Synonom 替换), 要么利用微调的通用预培训语言模型( 如 GPT2 ), 使用有限的培训实例来生成新的合成数据。 因此, 他们拥有微不足道的任务特有知识, 仅限于生成低质量合成数据。 为了解决这个问题, 我们提议了知识混合的 Nixture DA 数据增强模型( KindDA ), 这是一种Seq2Seq 语言模型, 在新颖的知识混合的 NLP 任务组合下, 在新颖的 Mixture 培训框架( KOMT ) 下, 将不同的 NLPP 任务具体任务整合到 IMDA, 将我们最高级的ODA 数据库, 将我们最高级的ODA 和最高级的OLMT 任务应用到 数据库。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2022年9月10日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
16+阅读 · 2021年11月27日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员