We present the full-resolution correspondence learning for cross-domain images, which aids image translation. We adopt a hierarchical strategy that uses the correspondence from coarse level to guide the finer levels. In each hierarchy, the correspondence can be efficiently computed via PatchMatch that iteratively leverages the matchings from the neighborhood. Within each PatchMatch iteration, the ConvGRU module is employed to refine the current correspondence considering not only the matchings of larger context but also the historic estimates. The proposed GRU-assisted PatchMatch is fully differentiable and highly efficient. When jointly trained with image translation, full-resolution semantic correspondence can be established in an unsupervised manner, which in turn facilitates the exemplar-based image translation. Experiments on diverse translation tasks show our approach performs considerably better than state-of-the-arts on producing high-resolution images.
翻译:我们展示了跨域图像的完整分辨率函文学习, 这有助于图像翻译。 我们采用了一种等级化战略, 使用粗糙级别的函文来引导精细级别。 在每一个等级中, 通信可以通过PatchMatch 有效计算, 反复利用来自周边的匹配。 在每一个 PatchMatch 迭代中, ConvGRU 模块被用于改进当前函文, 不仅考虑大背景的匹配, 也考虑历史估计。 拟议的 GRU 辅助 Patch 策略完全不同, 并且效率很高 。 当通过图像翻译进行联合培训时, 完全分辨率语义通信可以以不受监督的方式建立, 这反过来又能促进基于实例的图像翻译。 不同翻译任务的实验显示我们的方法比制作高分辨率图像的艺术要好得多。