We introduce a computationally efficient variant of the model-based ensemble Kalman filter (EnKF). We propose two changes to the original formulation. First, we phrase the setup in terms of precision matrices instead of covariance matrices, and introduce a new prior for the precision matrix which ensures it to be sparse. Second, we propose to split the state vector into several blocks and formulate an approximate updating procedure for each of these blocks. We study in a simulation example the computational speedup and the approximation error resulting from using the proposed approach. The speedup is substantial for high dimensional state vectors, allowing the proposed filter to be run on much larger problems than can be done with the original formulation. In the simulation example the approximation error resulting from using the introduced block updating is negligible compared to the Monte Carlo variability inherent in both the original and the proposed procedures.
翻译:我们引入了基于模型的共性卡尔曼过滤器(EnKF)的计算高效变体。 我们建议对最初的配方进行两处修改。 首先,我们用精确矩阵而不是共变矩阵来表述设置,并引入一个新的精确矩阵之前,以确保其稀疏。 其次,我们提议将状态矢量分成几个区块,并为每个区块制定大致更新程序。 我们在一个模拟示例中研究使用拟议方法产生的计算速度和近似误差。 对于高维状态矢量而言,加速是巨大的,使得拟议的过滤器能够运行在比最初配方所能处理的更大得多的问题上。 在模拟示例中,使用引入的区块更新所产生的近似差与最初和拟议程序固有的蒙特卡洛变异性相比是微不足道的。</s>