This paper analyzes a popular computational framework to solve infinite-dimensional Bayesian inverse problems, discretizing the prior and the forward model in a finite-dimensional weighted inner product space. We demonstrate the benefit of working on a weighted space by establishing operator-norm bounds for finite element and graph-based discretizations of Mat\'ern-type priors and deconvolution forward models. For linear-Gaussian inverse problems, we develop a general theory to characterize the error in the approximation to the posterior. We also embed the computational framework into ensemble Kalman methods and MAP estimators for nonlinear inverse problems. Our operator-norm bounds for prior discretizations guarantee the scalability and accuracy of these algorithms under mesh refinement.
翻译:本文分析了一种流行的计算框架,用于在有限维加权内积空间中离散先验和前向模型,从而解决无限维贝叶斯反问题。我们通过建立Mat\'ern型先验和退卷积前向模型的有限元和基于图形的离散化算子范数界的实验,证明了在加权空间中工作的好处。对于线性高斯反问题,我们开发了一个通用理论来表征对后验的逼近误差。我们还将计算框架嵌入非线性反问题的集合卡曼方法和MAP估计器中。我们的先验离散化算子范数界保证了这些算法在网格细化下的可扩展性和准确性。