Rules embody a set of if-then statements which include one or more conditions to classify a subset of samples in a dataset. In various applications such classification rules are considered to be interpretable by the decision makers. We introduce two new algorithms for interpretability and learning. Both algorithms take advantage of linear programming, and hence, they are scalable to large data sets. The first algorithm extracts rules for interpretation of trained models that are based on tree/rule ensembles. The second algorithm generates a set of classification rules through a column generation approach. The proposed algorithms return a set of rules along with their optimal weights indicating the importance of each rule for classification. Moreover, our algorithms allow assigning cost coefficients, which could relate to different attributes of the rules, such as; rule lengths, estimator weights, number of false negatives, and so on. Thus, the decision makers can adjust these coefficients to divert the training process and obtain a set of rules that are more appealing for their needs. We have tested the performances of both algorithms on a collection of datasets and presented a case study to elaborate on optimal rule weights. Our results show that a good compromise between interpretability and accuracy can be obtained by the proposed algorithms.


翻译:规则包含一套既成的报表,其中包括在数据集中对一组样本进行分类的一个或多个条件。在各种应用中,决策者认为这类分类规则是可以解释的。我们引入了两种新的可解释性和学习的算法。两种算法都利用线性编程,因此,它们可以扩缩到大型数据集。第一个算法提取了对基于树/规则组合的经过训练的模型的解释规则。第二个算法通过一栏制方法生成了一套分类规则。提议的算法返回了一套规则及其表明每项分类规则重要性的最佳加权值。此外,我们的算法允许分配成本系数,这可能与规则的不同属性有关,例如:规则长度、估计重量、虚假负数等等。因此,决策者可以调整这些系数,以转移培训进程,并获得一套更符合其需要的规则。我们测试了一套关于数据集的算法的性能,并介绍了一项案例研究,以详细说明最佳规则的适量性。我们的成果可以表明一种良好的折中法。我们从最准确性角度加以解释。

0
下载
关闭预览

相关内容

《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
204+阅读 · 2020年2月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Locally Sparse Networks for Interpretable Predictions
Arxiv
7+阅读 · 2020年6月29日
Arxiv
19+阅读 · 2018年10月25日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Locally Sparse Networks for Interpretable Predictions
Arxiv
7+阅读 · 2020年6月29日
Arxiv
19+阅读 · 2018年10月25日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
4+阅读 · 2017年11月14日
Top
微信扫码咨询专知VIP会员