We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
翻译:我们提出一个基于学习的稳健预测控制算法,以弥补某类离散时间系统动态中的显著不确定性,这些系统名义上是线性的,具有添加非线性成分。这些系统通常模拟一个未知环境对名义系统产生的非线性效应。我们优化了非线性反馈政策,其激励是典型的适应性控制法所开创的非线性反馈政策,这些非线性控制法在传统适应性控制中具有等同的确定性“估计和取消”控制法,以便在存在巨大不确定性的情况下实现显著的性能改进,在这种环境下,现有的基于学习的预测性控制算法往往难以保证安全。此外,我们建议使用贝伊斯的元学习算法,在一种通过功能接近学得的先前未知动态中利用结构(即数字预测)来利用结构(即数字预测 ) 。我们的方法还将典型的非线性适应性控制方法扩展到具有状态和投入限制的系统,即使我们不能直接取消动态中添加的不确定功能。我们运用现代统计估计技术,通过持续的抑制性满意度来证明系统的安全性。此外,我们提议使用贝斯的元学习算算算算算法,以更具有挑战性的模型的模型,我们最终的模型的假设能够更能性地显示我们最终的测试方法能够更难于测试方法。